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ABSTRACT

The transport coefficients of a gas of loaded spheres,

that is, spheres in which the center of mass does not coincide

with the geometrical center are considered. The amount by

which the center of mass is displaced from the center of the

sphere is denoted by _ and the diameter of the sphere is O_.

The scattering amplitude and cross section are found as power

series __n _/_(J- _ the r_e_o_s_v_.._ of the zero, first, _,u--_

second power of _/_" are obtained. Using these results, the

quantum mechanical expressions for the relaxation time,

coefficient of shear viscosity, and coefficient of thermal

conductivity are also obtained explicitly to second order in g/O-.

These quantities are then evaluated, numerically, in the

limit that Planck's constant approaches zero. The results

are found to agree with results obtained by purely classical

methods.

* This research was carried out in part under Grant NsG-275-62

from the National Aeronautics and Space Administration and in

part under a grant from the National Science Foundation.
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CHAPTER I

INTRODUCTION

Statistical mechanics is that field of physics which

attempts to predict the properties and behavior of an aggregate

of a large number of particles_ when the laws governing the

interaction of the constituent particles are known. This

fie_d is divided into two branches _- equilibrium statistical

mechanics, by means of which such properties of a substance

at equilibrium as the energy_ heat capacity, and equation of

state are determined; and non-equilibrium statistical mechanic@,

which has as its central problem the determination of the

transport properties of systems_ usually gases.

Although speculations on the atomic structure of matter

date back to the ancient Greeks_ a mathematically rigorous

attack upon the problems of the kinetic theory of gases was

not made until the middle of the nineteenth century. J.C.

Maxwell I in 1866 derived the equations of change for a

2
non-uniform gaS, L. Boltzmann in 1872 established his

H-theorem, and published the integro-differential equation

which bears his name° Attempts to solve this equation met

3
with small success until 1916-1917 when S. Chapman and

D. Enskog 4 independently published their solutions of

Boltzmannts equation. An extensive discussion of this

solution is given by Chapman and Cowling 5, and by

I



Hirschfe!der_ Curtiss_ arid .BiyJ6 This ,_ol,._t-_o_-__ _ and the

Boltzmann eqaaticn itself_ is ba_:d :n the following assumptions:

i0 Classical E_e:ha:,:L:_:i,a_ ,ralf.J t,:, _e_cribe molecular

inter act ions o

2o The gas is suffiaienti7 @i!_:t:e [hat three body

coilisicns maybe igno.:'edo

3. The molec_,Jleshave :,.o inte,[:>a! structure; they are

point particles s,Jr_'ounde_Jby ?7:he:_'ically symmetric fields

of force°

Research in kinetic the:o<:':',_s:i,:_:ethe time of Chapmanand

Enskoghas been principally Jlr'e_:ted toward the removal of

these restrictions°

Successful atte_ts t.-, int:rc,0::ce q_e.nrummechanics into
7

kinetic theory were first _de by #;oUehling and Go Uhlenbeck.

They preseOted a modified for<n of the ._:,!tzmannequation in

which bo,_hstatistics effects_ arising from the Pauii exclusion

principle_ and diffraction effects_ arising from the wave

nature of matter_ are taken into a<':_-_o_ntoQuantummechanically

it is impossible to say that a particle with a given energy

and angular momentumwill be scattered through a definite

angle upon collision with another particle° This results in

the classical cross section being replaced by its quantum

analog in the Boitzmann collision integral° An extensive

discussion of these mattec's is giveo by Hirschfelder_ Curtiss_



and Bird8_ and by Mori_ Oppenhei_ and Ross9o

Attempts to extend the treatment to dense gases were first
i0

madeby Enskog himse!f_ vh__ i_ !922 formulated a modification

of the Boltzmann equation iora dense gas of rigid spheres.

Manycontributions along thi_ line have been madeby subsequent

workers°

The kinetic theory of moiecules with internal degrees of

freedom was considered from the _ean free path approach by

j. Jeansllj12o He derived an e_p_ession for the rate of

equilibration of rotational and translational kinetic energy

for a gas of loaded spheres_ that is_ spheres in which the

center of mass is slightly displaced from the geometrical

center. The first successfnl attempt to apply the Chapman-

Enskog method to a molecule with in_ernai degrees of freedom

was madebv Pidduckl3j wh_ determined _he __ _##_ients

for a gas of perfectly rough spheres° A more exact treatment

of the loaded sphere has been given in a series of two papers
o 14

by Dahler and SatNer _ and Sa_dler and Dahlerl_ and of the

rough sphere by Condiff_ Luj _d Dahler16 An extensive

treatment of the ki_etic theory of s_noothrigid ovaloids has
17

been given by Curtiss He _erived a Boltzmann equation

appropriate to these moiecuies_ and gave a solution in terms

of certain integral expressions° These were then evaluated

for the special case of the spherocylinderj that is, a
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18
cylinder with hemispherical caps Kaganand Afanas'ev 19

pointed out that terms in the expansion of the perturbation

function arising from cc_pllng between the linear and angular

velocities were ignored in this treatment. The effect of these

added terms was considered in the work on the rough sphere and

loaded sphere mentioned above.

The work thus far mentioned has dealt with the removal

of someone of the restrictive assumptions° In this thesis_

however, we deal with a quantummechanical system of molecules

with internal degrees of freedom° in the following section we

present certain results pertinent to this work.

Section I.I The Transport Coefficients of a Quantum Gas

with Internal Degrees of Freedom

Expressions for the transport coefficients of a gas with

internal states based upon q_antum mechanics were first

derived by Wang Chang_ Uhlenbeck_ and de Boer 20_21. They

introduce a distribution function _£(_)n_)__ which is a

function of the position_ velocity_ time, and quantum number

specifying the internal state of the molecule. The number of

molecules with internal state specified by the quantum number _._

which at time _ lie in an element _O_Y_r" about _

_ (_;_)__. The Boltzmann equation which theyis

then write for "_ _._)) "_) is



+ -L F"

(l.l-l)

The quantity _. is the cross section for the

scattering ol Darticles in states _ and _ with relative

velocity _ to states I< and _ with relative velocity_.

The angles _ and _ are the polar angles of _i with

respect to _ . The primes on the distribution functions

indicate that they are functions of post-collision velocities.

Wang Chang_ Uhlenbeck_ and de Boer solve this equation in a

manner similar to the classic Chapman-Enskog method. The

results which they obtain for the transport coefficients are

given in Chapter VI of this thesis. This quantum mechanical

treatment of molecules with internal structure has been

generalized to the treatment of mixtures by Snider 22.

The treatment of this problem by Wang Chang_ Uhlenbeck_

and de Boer is not completely satisfactory_ however_ since

the translational motion of the molecules is treated classicallyj

and the internal states are assumed to be non-degenerate.

Alsoj the Boltzmann equation with which they begin_ Eq. l.l-ij

is not obtained in a rigorous derivation.

°



More rigorous derivations of the Bo!tzmann equation for a

quantum gas with internal degrees ef freedom were given

24
independently by Waldmann 23 and $_j_ider Snider's derivation

begins with the quantum ana!eg of the Liouville equation_ and

makes use of the formal scat_eri_eg theery of Lippmann snd

Schwinger° In a recent paper McCourt and Snider 25 have solved

this equation to obtain the coefficient of thermal conductivity

for a gas with rotational degrees _f freedom. For a gas in

which the local angular momentum density is zero_ their results

are essentially the same as those ef Wang Chang_ Uhlenbeckj and

de Boer_ except that added _ermsj cor_esponding to those

discussed by Kagan and Afanas_ev_ ere included_ Except for

these added terms_ the cn!y difiere_ece is that the cross

section introduced by Wang Chang_ Uhlenbeck_ and de Boer is

replaced by the true cross section_ averaged over the degenerate

internal states°

22
Snider obtained expressions fo:r the collision cross

section of rigid spheres being scattered from rigid spheroids

of small eccentricity. This led to an expression for the

coefficient of diffusion which was evaluated explicitly in the

low temperature region where quantum effects are large. In

this thesis we treat _he m_ode! of the loaded sphere. Since

their centers of mass do not coincide with their geometrical

centers_ loaded spheres wobble during their motion. Upon



collision they can exchange translational and rotational kinetic

energy. It is for this reason that the model is of interest.

Our goal is to use the formulas of WangChang_Uhlenbeck_ and

de Boerj as interpreted by McCourt and Snider (neglecting the

added terms of Kaganand Afanas'ev)_ to obtain expressions for

the transport coefficients for a gas of loaded spheres. In

order toaccomplish this_ wemust first obtain an expression

for the collision cross section. This we do using the results

of Gioumousis and Curtiss on the scattering of diatomic molecules.

_ection 1.2 The Scattering of Diatomic Molecules

Let us first consider a beam of point particlesj moving

in the positive z direction_ being scattered by a center of

force. If the incoming particles all have momentum _= _

the asymptotic form of the wavefunction is

Here ___ is the propagation vector, and the quantity _)

is called the scattering amplitude. By using this wavefunction

to calculate the current density far away from the scattering

center_ it can be shown that the probability that a given

incident particle will be scattered into a unit solid angle

/
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scattering cross section _ _p_) by the equation

(1.2-2)

In order to treat the collision of loaded spheres we

need the generalization of the above results to the case where

the molecules have internal degrees of freedom. In a series

26-28
of three papers Gioumousis and Curtiss have developed an

extensive treatment of the theory of diatomic molecular

collisions. This theory is appropriate to the loaded sphere

case, since a loaded sphere may be imagined as a diatomic

molecule with a rigid spherical potential surrounding it.

The internal state of a diatomic molecule is specified

by giving two quantum numbers--_, which specifies the energy,

and _71 , which specifies the z component of the angular

momentum. The molecu&es are considered as rigid rotatorsj

so that no vibrational degree of freedom is present. The

energy E_ corresponding to the quantum number _ is

given by

= ,
2P/<,T (1.2-3)

where P is the moment of inertia about an axis through
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the center of mass perpendicular to the symmetry axis, I< is

Boltzmann's constant, and T is the absolute temperature.

Let us consider two such molecules, molecule (_5 with

internal quantum numbers _o_ and _99 °_ , and molecule _ ,

with internal quantum numbers _ and f_o _ . The Hamiltonian

for this system is given by

Q %

_ 9 _ _ (1.2-4)

9-/-- + ÷ ÷ V,

where wr6 is the vector from the center of mass of molecule

to that of C_, , /_ is the reduced mass of the pair,

_ and are the internal Hamiltonians for molecules

02 and _ , and _/ is the intermolecular potential.

The term referring to the motion of the center of mass of the

system as a whole has been removed from the Hami!tonian.

Let S geuro_{_ Q) be an eigenfunction of _

corresponding to internal energy _m , that is,

Then, as is shownby Gioumousis and Curtiss, the asymptotic

form of the wavefunction, corresponding to the molecules

having initial relative momentum _-- _ "_q_g , and
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initial internal states

and _ , _2w , is

specified by quantum nu_ers ,

_o
The wave number _Q_ is

of energy

given by the equation of conservation

Then, corresponding to Eq. 1.2-2 for point particles, the

cross section for scattering from states ._Q f_ to

states _Q_,_ _o _ is given by

(1.2-s)



II

" :A rigorous treatnent shows that the scattering amplitude

and the cross section are_ in general_ functions of both the

incoming direction T and the outgoing direction _ . This

:is due to the degeneraay _f the internal states_ and the

necessity of choosing a direction fixed in space for the

quantization of these states. Gioumousis and Curtiss expand

this cross section in an infinite series:

The quantities D _1._]O)p_ rl appearing in this expression

are the representation coefficients of the three dimensional

rotation group_ and R is a matrix which specifies a

direction in space. The manner in which a matrix is associated

with a direction in space will be explained in detail in

Chapter II for the special case of the loaded sphere.

An explicit expression for the coefficient

__(_'_f_ct'__'//_9/flC9 ]_O_/_$)appearing in Eq. 1.2-9
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has been given by Gioumousis and Curtiss. It contains several

Wigner,
or Clebsch-Gordan,_oefficients_ __ , some

properties of which are given in Appendix I. It also contains

a quantity _Q_g_ _ L £o2_[ _ _ ; it is this quantity

which is determined for any particular molecular model before

the cross section itself is evaluated. We shall refer to

_(__ _ _ _o_ _ as the scattering amplitude;

this is in a sense a misnomer_ since the real scattering

amplitude is the quantity _°r__g_e/b_%_ )

of Eq. 1.2-6. In order to abbreviate the notation the symbol

is introduced to stand for the four summation indices ,_Q_ _ .

The scattering amplitude may then be written simply as _ _ _).

For collisions of two rigid bodies the scattering

amplitude _(_ _) is found in the following way.

The wavefunction for the system corresponding to configurations

in which the two bodies do not overlap can be written down.

A function f_ _) _ called the distance of closest

approach function_ is now introduced. It is defined to be

the distance between the centers of mass of the molecules

when molecule Ob with orientation _cu touches molecule _

with orientation _ Since the bodies are rigid the

wavefunction must be zero for a configuration of the two

bodies in which they overlap, and hence must, by continuity,
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be zero for any configuration in which they just touch. It

is shown by Gioumousis and Curtiss that this leads to the

following boundary condition:

(1.2-10)

D

where _ and ._ are the spherical Bessel and Hankel
@

functions, _ equals _Q_ , and _ equals _

If the distance of closest approach function is known_

equation may in principle be solved for _._ _) ,
the above

Then, the coefficients in the expansion of the cross section

may be evaluated by means of the following formula27:
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/

x.Z__ <. (-/)
.E_ _'_'

,_'Ik"L L//U.3

%

X "L, ,)
(1.2-11)

We now have in principle a method for calculating the

transport coefficients quantum mechanically for a gas of

rigid bodies. We can determine the scattering amplitude from

Eq. 1.2-I0. Eq. io2-II then yields the cross section expansion

coefficients. Finally_ the transport coefficients are obtained

from the formulas given by Wang Chang_ Uhlenbeck_ and de Boer.
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This is the program whichwill be carried out in this thesis

for the loaded sphere. The distance of closest approach function

and the scattering amplitude are determined in Chapter II.

Then in Chapter III the cross section (actually_ a cross

section averaged over the degenerate internal states) is

found. We define _ to be the displacement of the center

of mass of the loaded sphere from the geometrical center and

O-_ to be the diameter of the sphere_ and obtain the cross

section in the form of a power series in _/0- . The

coefficient of the zero order term is just the cross section

for rigid spheres_ and the coefficient of the first power

_0- is zero. We evaluate exactly the coefficient ofof

the second power of _/0- o Thus onr results are valid only

for small values of this parameter. Except for Snider's resultsj

in which one molecule is taken to be spherical_ we believe

that this is the first exact evaluation of the quantum

mechanical cross section for all transitions of a molecule

with internal degrees of freedom°

In Chapter IV certain moments of this cross section

are calculated which are analogous to the and of

the classical kinetic theory° By using these quantities_

along with the formulas of Wang Chang_ Uhlenbeck_ and

de Boer for the transport coefficients_ one could calculate
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exactly the quantum transport coefficients for a gas of loaded

spheres_ valid for small _/O-.

As a check upon the results obtainedj and in order to be

able to estimate the importance of various terms in the

expressions for the transport coefficientsj we then_ in

Chapter Vj obtain expansions of the momentsobtained in

Chapter IV in power series in Planck's constant. Finally_

in Chapter VIj we use these expansions to obtain the classical

limit of the transport coefficients. The results thus obtained
15

are in agreement with the results which Sandier and Dahler

obtained by purely classical methods.
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CHAPTERII

THESCATTERINGAMPLITUDE

In Chapter I the work of Gioumousis and Curtiss on the

scattering of diatomic molecules was discussed in generalj

with particular emphasis on the scattering of rigid bodies.

It was shownthere how the cross section is evaluated when

the asymptotic part of the wave functionj or the scattering

amplitude_ is known. It was further shownthere how the

scattering amplitude is determined from the condition that

the wavefunction be zero for any configuration of the bodies

in which they overlap. In this chapter we obtain an expression

for the scattering amplitude for the loaded sphere model as

a power series in the parameter _/O- _ which is a measure

of the degree to which the loaded sphere under consideration

differs from an ordinary rigid sphere.

Section 2.1 The Geometry of the Loaded Sphere

The model with which this thesis deals is the loaded

sphere. This is a sphere in which the center of mass does

not coincide with the geometrical center. Let _ be the

vector from the origin of space-fixed coordinate axes to

the center of mass of the sphere_ _ the vector from the

center of mass to the geometrical center_ and O- the

diameter. We wish to find a set of coordinates suitable for
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_: _e,..t ........... _. tb_ ¢ph'::,reo One setthe specific'at:i¢,,_of the .......,,....t_-_ ,_:

Of t'h6 vec.t -',v --$ T_'i_, f s ......:a,.....=. <.,.-.,'-.,..'_ _;kka'.t _"_;.__.,i be dene_

but: i.n orde:' that _,e J:_:v'_;._'.,r/?_e _L,U,_CJ',':I ,if gT_,,_? thec.,rV we

adopt t,._e lit'i[_ '_ -

X_. Y_ Z _ be embedde3 i:n t_iJe eFhe:ce> '<v_t,!:_ tt_e oz'igi:__ 0 _

at the :eater of _r_=_'._:_:ar:,J[i_,e i _ -<xL_ dicec, ce,_ _:i,-<_-:g

The Z _ axis is there:fore e.:_ .,-,,_':..--c,.f_'..:/_,,_et,::7oThe::.,_by

specifying _he ve_r:_:_:._ fl-b :t:J the _h-:ee [i_?oe,:1'_rar..glee29

O_ ) _1_ ) e:od _" ,:f t:_<,e 7_::i_e_J _::_ec: with z'e,_pect: to

the '_nDr. lined) ;_e ,:c,;_la'_,.e!, _.o:_-: _:f-,; _he ...._- =,,k'_-:_,: a:_J

orientatiog_ _:,_[:he,??he:_. Ihe ,_:_ _ _:._._ke-: o( _nd

are,. i_st: the _"I_" ' _¢ _ _ ......, r ...... 9,rig __:_ _ ,,,e:cr ; __ _'t.e t o t he

symmetry o! the sFhe_e [he thi_.:dE_._Le<:L:::;T. :_.,_l_ i._ _::'bitr_'Cyo

With each ....._'e........_ ,.-of as_'.oc:iate a maErix_............. st _.,., _ t: b:_: _T,'_, ....

S defined by

0

/

-_L C__J-O

0

0

I
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Viewed as a matrix which rotates vectors this matrix has the

A I __

following effect° Let _._ = {_Co_/_¢_l,.C_f_

be a unit vector whose polar angles _ and _ are _ and

c__ Then

A (2. I-2)

Thus the matrix S rotates this vector into coalignment with

the Z axis. Alternativeiy_ we may view S as the matrix

linking the coordinates of the same point in the two coordinate

systems° If _ = (x_y_z) are the coordinates of a point in

!

the space-fixed system_ and __'Tb = (x'_ y'j z') the

cQordinates of the same point in the body-fixed system_ then

/b" -- g "._ . (2.1-3)

Thus we may specify the orientation of a molecule by giving

the associated matrix S

Section 2°2 The Distance of Closest Approach Function

Consider now a pair of loaded sphere molecules labelled

cu

C1_ and _ o Let _ be the vector from the origin

to the center of mass of Ob _ _P_ the corresponding

vector for molecule _ , and _-- /_--,71, _
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The orientations of the m_iecules are specified by the rotation

matrices and S in the manner just described, Then

for two spheres in contact (Fig. i) we may define a function

f _$_ S_-) by the equation

(2.2-1)

_/_ _) is called the distance of closestThis function
F-

approach function° It is clearly a function only of the

relative orientation of the molecules_ and is invariant to

a rotation of the system as a whole, We may therefore choose

the Z axis to be in the direction of the vector _ _ and

may choose the first Eulerian angle of Scu equal to zero.

Hence the vector Scu__ lies in the X-Z plane on the positive

side of the X axis. The third Eulerian angle of both --_=u

and _ is arbitrary and can be taken to be zero,

With these conventions we have

(2.2.2)

(2.2-3)

(2.2-4)
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Molecule e

Mdecu]e b

X

Fig° 1
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where we have set _ Fur ther let

(2.2-5)

Then

o

(2.2-6)

We now obtain an expression for p _q_J as a power

series in _/O-. For reasons which will become clear later,

we retain terms through second order in _/O- From

Eq. 2.2-6 we find that

, • • .

S

(2.2-7)
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It is convenient at this point to introduce the representation

30
coefficients of the three dimensional rotation group

+ I_0!

(2.2-8)

and to write p (St_in the following form:

where

po(,¢_<>_9. .

p, - o--ED (S_2oo-D(S_oo]

(2.2-9)

(2.2-I0)

(2.2-11)

and
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/

+ g 0 {SUoop --GL T

i I. o t,

(2.2-12)

We now use these results to obtain the scattering amplitude

for the collision of two loaded spheres.

Section 2.3 The Expansion of the Scatterin_ Amplitude in

Powers of _/0-

The condition that the wavefunction be zero when the

spheres touch leads to the boundary condition given by

Eq. 1,2-10 where_ it will be remembered_+ stands for the

four quantum numbers _ , _ , _ , and ? Upon

introducing the expansion of _ _ Eq. 2.2-9j into the above-

mentioned equation_ Eq. 1.2-i0_ and using the expansions

/

(2.3-1)

(2.3-2)
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and

o

we obtain the boundary condition in the following form:

(2.3-4)
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Wenow equate the coefficients of the first three powers of

_/0" to zero and obtain three equations:

Coefficient of the zero power

r-

o- i

(2.3-5)

Coefficient of the first power

× 0_( S')o _-_. (2.3-6)
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Coeiiicient of the second power

J,

/

(2.3-7)

The method by which these equations are solved will be

illustrated by solving the first, Eq. 2o3-5, in detail. The

solution which is thereby obtained_ _ (_ L _)o , will

be inserted into Eq. 2.3-6, which will then be solved for

_L _)i_ In a similar manner _(_ L-_)_is obtained

from Eq. 2.3-7.

1.2-i0 can be solved for _ L_)only for thoseEq.
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values of the indices satisfying the conditions

(2.3-8)

and

This is due to the fact that the product of the Wigner

_o_ _ _ vanishes unless thesecoefficients _ _ ___ _Qfo

conditions are satisfied. It is convenient to introduce a

symbol _(_Q,Q_) which is equal to one if Eq. :2.3-8 is

satisfiedj and equal to zero otherwise. Wenote that if

Eq. 2.3-8 is satisfied then I_--_I _-__ L_ _ o_

and l_-_I _-_ct _ __ , This is clear from

the fact that if _ _ f_ satisfy Eq. 2.3-8_ it is possible

to construct a triangle with side lengths _,_ _ _ It is
p 3

also convenient for our purposes to extend the definition of

_ _ L_) by assigning it the value zero when the two

"triangle inequalities" are not satisfied.

In order to obtain an explicit expression for _L_we

first multiply Eq" 2"3-5 bY O _,cb(_ _O_'q , O_/'a'(_')O_-_

.9
and integrate over and ,_ This yields
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(2.3-10)

By the symbol _ /
we mean #?_/o_j_ We now multiply this

S:IQ2/_ and sum overequation by _'_" _'" ../D..: and _'_

The unitarity property of the Wigner coefficients states that

The presence of _ (_._I_'2) on the right hand side of this

equation should be emphasized. The Kronecker delta _ s is

equal to one if ._ equals ._I However, if we do not have

]_/°___I_ I_ /_ _/@#_ 2_- _ all the Wigner coefficients

in the summation on the left are zero_ and the sum is therefore

zero. In most listings of identities among Wigner and Racah

coefficients, the Z_ 's are not explicitly written. Omitting
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them leads to spurious divergences in someof the present

applications.

Wenow have

x ') (2.3-12)

Carrying out the sums over _ and _ yields finally

(2.3-13)

where we have now dropped the primes from _Io_ _/_ _ _/ _ and

As we have previously stated_ it is clear that this

equation can be solved for £E_ L_)o only for values of the

indices satisfying Eq. 2.3-8 and Eq. 2.3-9; howeverj remembering
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tha_wohavoassignedthevaluezeroto_L_Jifthese
inequalities are not satisfied_ we conclude that

-_R_/

}f
(2.3-14)

When the result thus obtained for f__)o is substituted

into Eq, 2.3-6 and this equation is solved in an analogous

manner we find that

r

(2.3-15)
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31
In obtaining this result_ we have madeuse of the fact that

__ _ (2 (2.3-16)

The result obtained from solving Eqo 2.3-7 is quite

lengthy and will be written as the sumof three termsj

where

(2.3-17)

/x 7 t>j:

(2.3-18)
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_.,2. . _ _././

><
_-_÷I

O..L.÷/

- s< .om<t..{

LJ'_°<,'s<iJ<>,..,
/ 0 _..

o• _._j_.. -(s?<>,_,,__<'-

(2.3-19)

and
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c ceLt.) =
. -9,+1

(. (_.e _÷/2 _'e.e2÷,') ,,.

,2.,q _ .&

Q_L -I- I /----4 "C

_, _'_

o "(S')o,,.0 _ _s°/)°,_0 (_")o.,-_.'

In the expression for £, _Q2_2 _ are four _ -type

summation indices. The symbol _ stands for _a_- .

In these three rather formidable looking expressions we

have the means for computing _/_L _)__" The general

procedure to be followed will be to insert the explicit

expressions forp1[_and2_2_)in to these expressions,

carry out the integrations over the angles by use of the

formulas given in Appendix I, and to use various orthogonality

relationships among the Wigner and the Racah coefficients in
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order to reduce the multiple sums which occur to sums over a

single index.

Section 2.4 The Evaluation of f(_ L_)l
I t

When Eq. 2.2-Ii_ which gives the expression for _/(_q_)_

is substituted into Eqo 2.3-15_ the following expression is

obtained :

_,q
(,_

,_ Z_ "_'_ _'

(2.4-1)

Upon carrying out the angle integrations we find that
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/ _ ._

9_

(2.4-2)

Hence

--9,
.,, (_ _/

O.L÷/

X

(2.4-3)
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Finallyj by making use of Eqs, A,2-1 and A.2-2 (an equation

number such as A,2-1 refers tc Eq. 1 of Appendix II)_ we may

write this result in terms of Racah coefficients. Thus

  fLtl,=
-4

f_O0

_( IS '_+_'+'- ._9_£.t,L)

]

(2.4-4)

Section 2.5 The Evaluation of f_ Z6) 9-
I I

The expression for fieLd'O_ is obtained in much the

same manner as were f/_ /_o and f_ _)I The

expression
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(:// (2.)

- o'<s'-).o-,oh'L, -o'(S°¢o,o'/:'L_,_fob_.]
(_) re,) (c)

(2.5-1)

must be introduced into the expression for A , Eq. 2.3-18.

This will be done one term at a time_ and the number in

parentheses under the term will be added to A as a subscript.

It will turn out that in order to evaluate the cross section

we shall need only those elements of f_)_ for which

is equal to _ . We therefore compute only those elements.

Thus

/_,_'¢___

(2.5-2)
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Making use of the orthogonality of the

carry out the integration over and

O 's_ Eq. A.I-2_ we

S_ to obtain

A, = _
<l. C - ;t.

/_ "E

Q2+I

0..4/-/

<M<2o--

/

This completes the evaluation of /-_ #

The expression for A_ is

(2.5-3)

-2,
6

_e a,'+_ 4__,(
,,'a "t'

-e_ -_" _ ,..._,S

m .,l._ 6-=(_?.= O (m_)o_-:,

(2.5-4)
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Making use of Eqs. A.2-1 and A.2-2_ we are again able to write

the result in terms of Racahcoefficients.. Thus we find that

(2.5-5)

The quantity A@(_Zf)is obtained by inserting the

product D E$ )O-t Ot(_Ol into the expression forA_L_

we obtain

Q.L-I- I

From Eq. A.1-4 we find that

_- _O. _S "_ (2.5-6)
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_ _ff'£ /£ °'' 1£_-

.9-._,_'/-I 8 o_o 8.£.__/.._ ,_ / (2.5-7)

However, any Wigner coefficient __ is zero if the sum

-_l__ is an odd integer° Thus

= o.
In an analogous manner we: find that

(2.5-8)

(2.5-9)

Finally, we need /_'_?) Howeverj this is easily

shown to be the same as _£{_L_ with the _cL and _

interchanged. Hence

i

(2.5-10)
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The expression for IOL_L_i is given by Eq.
2o3-19o The

combination oi sp,her_c_l Bes_el funotions appearing in this

equation is just the derivative with respect to _O- of the

left side of Eq. 2o3-i60 Th_js

_ _O-S .

_S in the evaluation of /-_{_L_;we _-_'ite

?, __>s_) :

(2.5-11)

(2.5-12)

where again the _mber_ in parentheses below the individual

terms are added to

we have :

as a subscript= Then_ from Eq. 2.3-19

(2.5-13)
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Now by Eq° Aol-3_ we have

I::o'_S°_oo]- E <%"oo
S_Hence the integral over becomes

2

v--;

o&S_ = )__2£ o..+I

(2.5-14)

(2.5-15)

So

o.._+!¢

(2,5-16)

Using Eq. A.2-1 this can be written
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Q"o".P,.f (_i'_-J
( o._.+J

E %" _ _

(2.5-17)

But _. ; _0..
_(_OO is

indicesj _£Q # ]

_ XL/-_°" .<'>/SZ_"
(2.5-18)

equal to zero_ since the sum of the three

is an odd integer. So we find that

(2.5-19)
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Theq_antity8_:_L_)
interchanged° Hence

with ,_ _ and _ _

-4
&

In order to complete the evaluation of ,(_L_Jswe must

C(_ _J which is given by Eq. 2.3-20. This isnow compu[e

the most difficult of the terms to evaluate since it contains

Q

both _(_)#, given by Eq. 2.4-4 and p/tS,S _given by

Eq. 2.2-11o When these substitutions are made we find that

(2.5-20)

L

_._

l,'W'{.£I L /4._ .,,4)
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.0"7, /._

_ 3L_o _j2¢-oo

r%,,,_,2_

(2.5-21)

Consider now the product of the two expressions in brackets in

Eq. 2.5-21. When the first term of the first bracket multiplies

the second term of the second bracket there will occur the

. . C> _.l, _

product _e_£Oo 0_02,'._ 2" which> as has been previously

mentionedj is equal to zero. In like manner_ the product of

the second term of the first bracket with the first term of

the second bracket is zero. We then make use once again of

Eqs. A.2-1 and A.2-2 to obtain
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(2.5-22)

This completes the evaluation of the first three terms

in the expansion of the scattering amplitude in powers of _/O-
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CHAPTERIII

THECROSSSECTION

In this chapter we calculate the cross section for the

scattering of two loaded spheres in the form of a power series

in g/O-" . This is accomplished by using the expression

obtained by Gioumousis and Curtiss for the cross section in

terms of the scattering amplitude, an explicit expression for

which was obtained in Chapter II.

Section 3.1 The Expansion of the Cross Section in Powers of

In chapter I the cross secti0n for the collision of two

rigid bodies was given. For this quantity we used the symbol

7-where specifies the direction of motion of the incident

molecule, and _ the direction of motion of the scattered

molecule. As was menti_ed in Chapter I, however, McCourt and

Snider have shown that a knowledge of the so-called degeneracy

averaged cross section is normally sufficient for the evaluation

of the transport coefficients. This is defined as the result

of averaging the cross section in Eq. 3.1-1 over the initial

_r_ values _ and _ , and summing it over the final

values, _O _ and _'. Since there are _+ i values of rr_
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for each value of _ we are led to the following definition of

the degeneracy averaged cross section:

(.9._+0 (_._-_÷J)

___S{ r I_°,_._ _,_°,__2_,__IR).
__ (3.1-2)

It is shown by Gioumousis and Curtiss that this averaged cross

section, which will henceforth be referred to simply as the cross

section_ may be written in the form

c_

>_ 0 T o . (3,1-3)

From the expression for the representation coefficients_

Eq. 2.2-8, it can be seen that a coefficient of the form O'Y_f_T-lflo6

is a function only of the second Eulerian angle of _T -1"

This angle is the angle % between the directions of 7- and _ .
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Thus we arrive at the conclusion that the degeneracy averaged

cross section does not depend individually upon the directions

of T and _ _ but only upon their relative direction.

From Eq. 3.1-3 we see that a knowledge of the expansion

coefficients _(_-__ I_) is tantamount to a knowledge of

the cross section itself. Howeverj as is true in the classical

theory of transport phenomena_it is not the cross section

itself which is required_ but only certain momentsof the

cross section. In order to calculate the transport coefficients

in the quantumcase we shall require _(__ _I _) only

for _ equal to _ , / , and _ . We now proceed with the

explicit evaluation of these quantities for the loaded sphere

mode i.

The formula for the expansion coefficients in Eq. 3.1-3

27
is

(3.1-4)
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• The quantity _/_J which appears in this equation is the

scattering amplitude which we have evaluated explicitly in

Chapter Iio When the expansion of _L_# in powers of _I O-,

Eq. 2.3_3, is inserted into Eq. 311-4 an expansion of _(_O_0_I_J

in powers of _/CY is obtained. Using a notation analogous to

that used in the expansion of _/_ we write

+..-.
(3.1-5)

In order to evaluate the coefficients of the successive powers

of _/O _ in this expansion we must first write the product of _ 's

which appears in Eq. 3.1-4 in a series:
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Wenow insert this expression into Eq.
(3.1-6)

3.1-4 to obtain

I_@__l_for _ equal to 0_ i, and 2 .

Section 3.2 The Evaluation ofl/__,l_#o andI/2_-_°-I$/J_!

An equation for Z( N9   ImJo is obtained when the

first term in Eq. 3.1-6 is inserted into Eq. 3.1-4. The explicit

for __o is given by Eq. 2.3-14. Afterexpression
F

carrying out the indicated summations over _ _ _ _ and

we obtain
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_ X/ 9_

The sum over L t may be carried

This yields

(3.2-1)

out by the use of Eq. A.I-12.

X

We must now evaluate the sum

(3.2-2)

(3.2-3)

Making use of the formula
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we

fl

_=°

obtain

L

1

Hence

(3.2-5)

(3.2-6)

Using this result in Eq. 3.2-2 gives

_,4"

(3.2-7)
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Insertion of this expression into Eqo 3ol-3 yields the familiar

expression for the quantum mechanical cross section for the

collision of two rigid spheres° This is to be expectedj since

if we set _ equal to zero our model of the loaded sphere

becomes simply an ordinary sphere° The presence of the product

_Q_ _O_ _ indicates that this is an elastic cross

section; that is, there is no change of internal state in the

course of the collision. This is also expected, since the

only mechanism for the change of internal state in a loaded

sphere is due to the fact that the sphere does not rotate about

its geometrical center° As _ approaches zero the means of

exchange of internal energy upon collision also vanishes.
_ _ i

The expression for /(_-_°_271_)J is obtained by

inserting the coefficient of _Io_ in Eq. 3.1-6 into Eq. 3.1-4.

When we examine the expression for f__)j _ Eq. 2.4-4,
i I

we note that every term of /_0_I_ ] will contain either

k_./_°" or _ I'_'_"
_0_ _ 20_ _ _ But both of theseQOO

products are zero; we therefore conclude that

(3.2-8)

We now come to the main task of this chapter.



T/----Q =_.. o_

•_nEq.3.2-7weshowedthat Z(_-_0_l_Jo is the cross
D

section expansion coefficient for the rigid sphere, In Eq, 3.2-8

we see that terms of the first power of _/O _ make no contribution

to the cross section. Therefore_ the first nonvanishing correction

to the rigid sphere cross section is of the order of (_/O-_ = It

is in this term that we shall see the possibility of inelastic

collisions_ and we shall discover how selection rules for such

collisions arise. These inelastic collisions give rise to the

quantity known as the relaxation time_ which will be evaluated

in Chapter VI.

We note from Eq. 3.1-6 that the coefficient of contains

three terms _

56

L

and

(3.3-3)
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The first and third of these contain 7_L_yo _ and therefore

give rise to elastic terms only in the cross section. Als% it

is easy to show that the results obtained from inserting

Eqs. 3o3-1 and 3°3-3 into Eq. 3oi.-4 are just cemplex conjugates

of each other. The middle term_ Eq. 3.3-2_ is the most

interesting -- it gives rise to the term in the cross section

describing an inelastic scattering process. The inelastic

contribution to the cross section has been obtained by

28 _ -_Gioumousis and Curtiss for the special case that _ _-_ ,

and ._" are zero and _ _ is one. We now introduce two new

symbols. The elastic cross section _ (_O_2 _ l_-J_ is

the sum of the results of inserting Eqs. 3.3-1 and 3.3-3 into

3oi-, .inelastic, ros sect o 

is the term arising from Eqo 3° 3-2. It then follows that

-_ S_ _q'_ _ _" J J-J_. (3.3-4)

Proceeding now to the evaluation of _j_ f_-_-_l_-JO_

we write

i
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/

_J

"11- C.C.. (3.3-5)

In writing the above equation we have inserted the expression

for _t_)o J Eq. 2.3-14, into Eq. 3.1-4 and have carried

out the sums over _ and _ The letters C.C. denote the

complex conjugate; the complex conjugate of the entire expression

is to be added. The summation over L may now be carried out

with the help of Eq. A.I-12 and we find that
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I

"IL C-C, (3.2,-6)

o_ three part_ labeled A , L_ _ a_d C , andthat /_ and

S were further divided° We now insert these parts of

_L_)o_ one at a time into Eq. 3.3,-6_ and affix a subscript

to _.__ _-_-_op_ I_-)Q to denote the part of _[__..

which ha_ been used, For example_ _-t

denotes the resuit obtained by substituting the expression for _
/

Eqo 2.5-2% into Eqo 3.3-6, The total expression for

27_ (f°_-_zI_)_ i_ then of tho form

÷

(3.3-7)
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This equation states that Zgx [_q_2r_q_* ]_) is the sum of

nine terms. We now compute these parts individually.

The expression for A/(_) is given in Eq. 2.5-3.

Hence

(3.3-8)

We are now free to carry out the sum over _ and / t by means

of Eq. 3.2-6. Putting this result into Eq. 3.3-8 and writing

out explicitly the complex conjugate term we find

x

RA"

/
(3.3-9)



61

Eqo

-r-

In order to obtain -L_

2°5-5 into Eq. 3.3=6. This gives

we insert

/

"
(3.3-I0)

From Eqso Ao1-12 and A.I-13 we see that

t.."

>4
L"
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Hence

(3.3-12)

From Eqs. 2.5-8 and 2.5-9 we have that

A _ C_L_) are equal to zero. Hence

and

(3.3-13)

and

In the same manner that we showed _£_A

we can show that

is equal to zero

o (3.3-15)

This then completes the evaluation of that part of the elastic

cross section due to the term A(_L_) in the scattering

amplitude.

The expression for _1(_) is given by Eq. 2.5-17.

Upon insertion of this quantity into Eq. 3.3-6 we obtain
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6
._ l -F'Jiv ,, _ _ -'

/_._ q_ /'

_-ij (_

i, _ 7__ _,

Now from Eqs. A.1-19 and A.1-16 we see that

" _) (3 3-17)

and from Eq. A.I-13 that

Hence by carrying out the sum over _ _
and _ _ and utilizing

Eq. A.I-10_ we obtain
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cAP," 9..

_".& :,_a/'_') ÷ C . C .

/

Then_ by making use of Eq. A.I-13 we obtain the result

(3.3-19)

Since g_L_) is equal to zero, Eq. 2.5-19, it

that

(3.3-20)

follows
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we require _L% 8a

to show that

By noticing the similarity amongthe expressions thus £ar

obtained we may summarizeby writing

_7-<,.+_ g'.__-5 o_e-1o%_ =

S

g

gaea°" _:a'

¢,_,(a'¢) _ . i

I

:a:a

5JJ J
I

(3.3-23)
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In order to complete the evaluation of the elastic part of

the cross sectionj we now calculate Z I_C (_-_I_J_ .

This is obtained by substituting Eq. 2.5-22 into Eq. 3.3-6. When

we make this substitution we get

/

_,_IG °" .

]l

_he only terms in _hi= e_pression containingJ L" are (_Z__;J

and _'f.e i_' _"..Y ,_'J Wema_therefore carr_

out this sum to obtain 1/3. Next the sum over _ is carried

out using Eq, A.I-12. This results in
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I

I i

I

[_ (z,w/)(aa'+,) (a2,0

I._ _ '2.

We now carry out the sum over
rX_

by using Eq. 3.2-5.

(3.3-25)

The

final result is

.,.q_,_.

O

._ l_z"t'-_..

,-_sL...,..<ooj _'._s,_]
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f

J-ooJ

•
(3.3-26)

We have now obtained all the contributions to the elastic

cross section. They are given by Eqs. 3.2-7j 3.3-23 and 3.3-26.

Section 3.4 The Evaluation of _(__O_I_-J<l --

The Inelastic Part

We new evaluate the only remaining part of the cross

section_ the inelastic part. This arises when we substitute

Eq. 3.3-2 into Eq. 3.1-4. When we use the explicit form of

_f_ )I as given in Eq. 2.4-4 we obtain
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(__w-ld-_ _ =
! !

o.,

L

l,v"(L _ "_"_.¢d)

÷

/

(3.4-_)
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We now use Eq° A.I-!4 in the form

6._/

The sum over L then gives 1/3. Thus

(3.4-2)

I ._/5_,"

(3.4-3)



7_

The final form is obtained by carrying out the sumsover ._

by the use of Eqs. A.I-12 and 3.2-5. We then have

and

--/

._ I÷,T_,'I+;I f_ ,,¢'÷_-_[-/) i

• (3.4-4)

For any given value of T the above fourfold sum can

be reduced to a single sum over _ , since for any _ the

Wigner coefficients restrict the number of possible values

of %/ , _ , and _/ (See Appendix III). The presence

of the factor

-_ ._ i_ "g" . _-

(3.4-5)
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meansthat one of the molecules changes its internal state

while the other does notj and that the change in the quantum

number_ Q" or _ is equal to plus or minus one. This

selection rule, which holds for all values of _- , arises

from the fact that this is the second term in an expansion of

r___ in powers of S/O- Presumably, larger

transitions would be allowed in successive terms.

We now have an exact quantum mechanical expression for

the cross section for the collision of two loaded sphere

molecules through the second power in _/0 _ In the

fol_owing chapter_ we shall calculate certain moments of the

cross section which are necessary for the calculation of the

transport coefficients.
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CHAPTERIV

MOMENTSOFTHECROSSSECTION

In Chapter III we derived an exact quantummechanical

expression for the cross section for the collision of two

loaded spheres, Our goal is to calculate the transport

coefficients for a gas madeup of such molecules. In this

chapter we shall calculate several quantities related to the

cross section which are necessary for such a calculation.

Section 4.1 The Evaluation of _(0{__)o and @_'00{.£__o

In the classical' theory of the transport phenomena of

spherically symmetric molecules_ certain moments of the

cross section ___ are defined by

?f

___"){_ : _T}- ;{/--C_O_'_-_) I{_jJ_)_ _-_ (4.1-1)
76

Here O_ is the relative velocity of the molecules before
#

(and after)collision , and _(_j_J'_

for scattering through an angle

in a series of Legendre polynomials a

is the cross section

we expand i(_p_)If
u

c_

(4.1-2)

we find that
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and

(17

- = (4.1-3)

In an analogous manner we defir_e @ and for our loaded

sphere molecules by

(4. i-5)

and

2 o.)

(4.1-6)

These two quantities_ along with the inelastic parts of the

cross section expansion coefficients S_ (_'_._ 0"_ ]_T.)_

for _- equal to O_ I_ and 2_ are needed for the calculation

of the tran_pcrt coefficients° Explicit formulas for these

coefficients are given in Chapter VI°

When the expansion of _ (__LI_ in powers of _/0-_



Eq. 301®5, is inserted into Eq. 4oi-5 we obtain a similar

expansion of _/) ,

(4.1-7)

where

_L-- -o-_. _ 4

(4.1-8)

Qc )The procedure for is identicaL. From Eq. 3.1-5 we see

that the quantities_/i_¢e_$1_o are the cross section

expansion coefficients in the case _ equals zero, that isj

in the case that the loaded sphere becomes an ordinary sphere.

Hence _ {_ and we

calculate in this section, are the --_O) and _{2# for rigid

spheres of diameter O"_ .

The expression for S_-_-_:_J_;ois given by

Eq. 3.2-7. We introduce the phase shift for rigid spheres 3 ]2,

defined by

_'A (o_Po"") (4.1-9)

where _ and _ are the spherical Bessel and Neumann

functions. From this definition it is easy to show that
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./ [/_-i C. (4.1-10)

When this expression is substituted into Eq. 3.2-7 we find that"

x

and

(4.1-1.1.)

3

Due to the presence of the factor

index _i is restricted to the values zq-_ ! and

(4.1-12)

the

5[- J Hence
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_,,,,,oJ (1_ O-e

32
From tables in Condon and Shortley we find that

We substitute these into Eq. 4o1-12 and change the

to _ ] in the second term. This gives

(4.1-14)

index /_

_<.? __,.f,;,+,

+Ci-e C_-e . (4.1-1s)



78

When the exponentials are exp_'essed in terms of trigonometric

functions _,e find that

--=<,v'_ ,1÷_)
iI

Finally_ by lowering the index

term_ we obtai_

(4. i=16)

by one in the ./_ _l,#-!
(

,l

(4.1-17)

By performing similar manipulations we find that

(4.i-ls)
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We now comSine these results according to Eqs. 4.1-5 and

4.1=6_ which gives

and (4.1-19)

These are the weil kno-w_ expressions for Fxt_C/)

33

rigid spheres

In Chapter iIl we showed that 7_ -_ _I_)I

I __

to zero o

&)
and _ ior

is equal

and @(2)/'_ 1_"_'_ _._-4_)!

are also =_0,__ai to zero.

The derivation of these formulas has been given in some

detail_ since exactly the same techniques will be used to

express the correction terms to the rigid sphere _ 's in

terms of the rigid sphere phase shifts°

Section 4.2 The Evaluation of _f/)_'_Q_and _)/_-__

The Elastic Part°

As we have done in the previous chapter_ we divide

_2)_°__0_ and _ into separate parts

corresponding to the parts into which I_'_2$1_ehas
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been divided (see Eqs= 3°3-4 and 3o3-7), and we affix a subscript

tc 0 tc l_bel the separate parts.

We begin by evaiu_tin_ _;C 9.- The

expression for _-_;C (_q__I_-)__ is given by Eq.
3.3-26.

It is convenient to express this quantity entirely in terms of

rigid sphere phase shifts° This can be done by differentiating

both sides of Eq. 4o1=10 with respec_ _o _C_ and using

Eqo 2° 3-16 to obtain

(4.2_i)

We shall hencef°rth _cite ._L for _67# ,

and _ for 0-) We ai_:; note that

2

,.,_ //

- -
We:,owi_sert _h_sexp_ess:_o_fo_?_ (#_f_/'_-; into

the e_pre_s_o_for .1_ c (_i_._/,T)_ , E_' 3.3-26.

The result of inserting the term --//_O- into this

expression we denote by __£_C_ (_g_/_O. After

(4.2-2)
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_ _ and
carrying out the summations over ._ _

we obtain

(4.2-3)

We now insert the remaining two terms in Eq. 4.2-2 into

Eq. 3.3-26. and we denote the result by _jC_{_-_I_)_=

Thus

Q
6_

i!
_Z
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o..

(o..,T÷/)L'
R'),"'_

¢- N//

(4.2-4)

It then follows cfla_

2

T_f

_.,//

/

(4.2-5)
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and

[ ii
Consider now an expression of the fo_:_, (4.2-6)"

z_ <'(_ ,-_, ._, _,. (4.-,..:>

CY"
The qu,ntity (_-g_)2 :,,ay be written in the general

form

Then
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(4.2-9)

Hencein an expression of this kind we

in place of -L_C=

°--_[O(_j-_Q_j_) by the equation
0

_t','2

We now define

_ (0 1 +.-
(4.2-10)

We note that _ (_4_) is identical with

except that _.,_,_= C .._ '_._) __ has beenreplacea by

_ _ _J_ _ _-_ _) '2 " we de fine _' (_ _ _ "_)

in an identical fashion. In Chapter VI we shall see that

the expressions for the quantum mechanical transport
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coefficients i:-.to which ,_/ i_^__^_ t_Q IJ__w_j

are to be inserted are of the form of the quantity X

in Eq° 4o2_=7. Therefore_ we shall henceforth work with

f)__) and _)_-__ _ instead of

_(_)_-_._ _ "_) and _O_-_ _ _ 2 )

The summations over and may be carried out in

Eqs. 4.2-5 and 4.2-6 by using the explicit expressions for the

Wi_ner coefficients given in Eqs. Aol-20 through A.I-24.

The result is :

O_

A

/I

//

J

-F9_2_/

//

(4.2-11)

i!
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and

_t..,/_ -'>" ._.

(_-,)n,_+oq_L7-_-'_( _ _ _<_,_-7=_=_-_'7__,_ _-7=-_

I i

.J
(4.2-12)

(I)

We have now completely expressed the contribution to _ and
U

) from the second and third terms in Eq_ 4.2-2arising

in terms of rigid sphere phase shifts and their derivatives.

We must now find the contributions to _(1) and __)
O V

arising fro_r__4_(_O_'_10-J_ _ Eq. 3.3-23 and

Z_£_C_L/_°__-_ l.,J'J_ _ Eq. 4,2-3. These quantities

are of the same form and may therefore be combined. When the
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's arising from the sumare evaluated we find that

Q)

and
(4.2-13)

=--3
;I

(4.2-14)

This completes the evaluation of the elastic contributions to

_C" _ _ _ _) and _)_q_._'._.

Section 4.3 The Evaluation of _ _ _ @_. and

@ (_ _-,._ _JTo. -- The Inelastic Part

The expression for___?_ _ I_)__ is given by

Eqo 3.4-4. For any given value of _- the sum may be reduced

to a single sum over _ , since _ _ _/j j and are

restricted to a finite number of values by the Wigner
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cceft':_._:.iente,__rnecltP.is i_ do-r,e__nd explicit expressions for

the Wig'__er:_:_.dRa..'_t ,:_ef_i_ients ar'e inserted into the equation_

(see Ap_,ez_di'_Z'_]f'__e <-_btaln the _,_-,l_o_'ing_es_ts_

X (4, 3-1)

9



9O

dj_ ,,'_d' I -I__ Y_"_, _7_-__+5_,-f_+,)
<

(4.3-4)
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and

(4.3-3)

These quantities may now De combined to form _ and _0_£
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_ f,,.,/+m 2 t++ 2

......... p --j

(4.3-_)
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We have now obtained express:ions fer all the quantities

which are necessary for an ez:act quantum mechanical evaluation

of the transport coefficients for a gas of loaded spheres°

The formulas for these coefficients are given in Chapter VI.

For the evaluation of the relaxation time_ only the total

inelastic cross section_____'_ _ IO)O_ _ given by

Eqo 4.3_i_ is needed. For the _:al_::,::.lati.o:_ of the s_!_._.:.r _i_cosi.ny

the quantities _(_)(_Q_'.-_q._'g) .and l--_b-(_._2rl_ J

Eqo 4.3_3_ are needed° The zero order _e_[[_ in the expansion of

0
given by Eq. 4.1-20; the secor_d non-va_±shing [erm, _(')_-_*)__

9

which is the coefficient of (_/0 _ )_ in r,at expansion_ consists

of the sum of the quantities given By Eqso 4o2-12_ 4o2_14_ and

4°3-5.

For the evaluation of the coefficient of thermal

conductivity _Cl_-_.8) is needed, along with

__O_g_q_j_'g I _)z2. _ Eqo 4o3_2. The term corresponding to

rigid spheres_ o _ is given by Eq° 4oi-i9_

and _._'_'._-Q._" __ is equal to the su_-of the quantities

given by Eqs. 4o2=ii_ 4o2=13_ and 4°3_4.

In order to obtain numerical values for the t_ansport

coefficients_ the phase shifts appearing in these expressions

for the moments of the cross section wo_al,d have to be computed
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from the definition of the phase shift in terms of Bessel

functions_ Eq. 4oI-9_ and the summationsover _ carried out

numerically° These momentswould be inserted into the appropriate

expressions in Chapter VI_ and the integrations over the

incoming kinetic energy and the sumsover the incoming and

outgoing internal states carried out,

in this thesis_ however_we do not evaluate the quantum

mechanical results numerically_ but instead we obtain the

classical limit of the transport coefficients° In the following

chapter we shall expand the quantiLi_s given in this chapter

in power series in Planck_s constant° Then_ in Chapte1:VI_

we shall evaluate the transport coefficieHts in the limit that

Planck's constant app_oacheszero.

• °
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CHAPTER V

EXPANSIONS OF THE CROSS SECTION MOMENTS IN POWERS

OF PLANCKIS CONSTANT

In this chapter we derive expansions of the cross section

moments obtained in Chapter IV in asymptotic power series in

Planck's constant. These are developed by use of asymptotic

series developments of the Bessel functions which occur in the

definition of the spherical phase shift.

Section 5.1 The Expansion oi the Phase Shift

We begin by defining certain quantities which will be used

throughout the discussion in this chapter:

where
is Planck's constant and y

of the pair of colliding moleculesi

(5.I-i)

is the reduced mass

(5.1-2)

the kinetic energy of relative motion s

(5.1-3)
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the impact parameter_

L

the dimensionless relative velocity_

; (5.I-5)

_o_

_= (internal energy of state with quantum number_ )/kT;

(5.1-6)

mE =4--f ; (5.1"7)

and

(5.1-8)

Conservation of energy requires that

(5.1-9)

2 _-2.

(5.1-10)



96

We have thus far considered the phase shift f/%{_O_/ as a
|

function of _ and _O" We now consider it a function of

the three independent variables L , _- , and _ and write

(5.1-ii)

Then

.:.7

_

(5.1-12)

and

(5.1-13)

The defining equation for _3 (_6"_ j Eq. 4.1-9, may be

written in terms of ordinary Bessel functions of half odd

integral order as

But

(5.1-14)
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= <-n 1½+_(;eO, (,.,-">

where N is the Bessel function of the second kind. Watson 34

uses the symbol y for this function. The asymptotic

expansion of _(£j_) in powers of _ is based on the

asymptotic expansion formulas for the Bessel functions given

by Watson. When the order of the function is less than the

argument we have

=

_ (-/;_ f"{2_+ {)

÷ _ (>,._>+.f'-_.p

×

and

L
__o r(gj

(5.1-16)
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Oo

Z "

In these equations _ is a fixed positive acute angle and

the A _ are functions of _ ; in particular, 4o = i .

If we now set _ = _4 _ = //_./._ and .JJ_._< =6"_--/_

we find that

_/
7P--,__-)"'4

to),, 0

7 "_-;+Yk_v_," (5.1-18)

where

Explicit expressions for 9(_).(4L _')

be needed in the present work.

for_ >0
will not
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In the case that the order of the function is greater

than the argumentwe have

J_ _/_,_._ _ ] _- ,¢

oO

and

Ano

(5.1-20)

Since _2

(5.1-21)

for _,_ real,

we find that

Hence we may take

(5.1-22)

L

(5.1-23)

The following formulas, obtained by differentiating the

C0)_4 _-) Eq, 5° 1-19, are used frequentlyexpression for _

!
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in the following work:

(5.1-24)

and

(5.1-25)

(5.1-26)

.e-.<.o- fl

These formulas hold for . For e4_:)O- the three functions

are taken to be zero.

We illustrate the use of these formulas by computing the

zero order term in the expansion of _J)(_°__)o,

Eq. 4.1-19_ in powers of _ . In order to carry out the

sum over _ _ we make use of the Euler-Maclaurin 35 series.

This series furnishes a method for changing discrete sums to

integrals. It states that



i01

OO

OD

..,'u-4__... - o

where the 8k are real numbers known as the Bernoulli numbers.

When we apply this formula to our expression for _O_J2_J)o_

Eq. 4.1-19j and change variables from _ and _ to Z and

E we obtain

K

(5. ]..28)
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The only term in this expression which is of zero order in

is the integral. The other terms are of at least first order

in _ _ and those evaluated at infinity vanish by Eq. 5.1-23.

Let us now consider the integral on the right hand side in

!

Eq. 5.1-28. To lowest order we may neglect the _ in

comparison with the Z _ and we may change the lower limit

of integration from _ to O . Also to lowest order in

we may write

L

= O, e?_- >o-'.

Finally_ changing the integration over

over _ we have

L

(5.1-29)

to an integration

-

In the same manner one can show that

(5.1-30)

(5.1-31)
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As _ approaches zero_ these quantities approach the known

36
classical values °

Section 5s2 The Expansion of Z_(_2.Q_-]O-)__ _ in Powers of_

The formula for Zo_ _-_-_I O)__ is given by

Eq. 4,3-1. In order to determine how many and which terms are

to be retained in the expansion of this quantity let us

consider a quantity

We wish to find the lowest order term in the expansion of ]

powers of _ First we note from Eqo 1.2-3_ which gives

the energy corresponding to the quantum number _ _ that

in

%
r/¢-r ('_'+ <);

and that

,_c (_'_ _._'-) _ _) =
Iz.r'/_7

(5.2-2)

--o,.,
.¢. (5.2-3)
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with similar formulas for _-_ = + I . Wenote that these are
m

the only transitions which need be considered_ since the

quantity

ooJI===+I_==oo) _<',<'t (5.2-4)

is zero except in these four cases.

7_

Using the explicit expressions for _o_ given in

Eqs. A.I-20 and A.I-21 we can carry out the following sums:

--- F/f.;T (5.2-5)

and

_a._ .t,..

,2..I QS

,7
L_<'÷/j

_if & __ o

# (5.2-6)
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The important point to note is that while Z_(_O_82_2_J is of

order . _ both sumsare of order o The reason for this

is thatZ__°_l _) and Z_(_O_g_Q-/ _J almost

cancel in the sumin Eqo 5.2=5. Their sumis a term of order

Now let us expand the quantity f_+/l (_6-_ appearing in

the expression for $0_g(__-_2_ @@ 2. I O JS[

II

(5.2-7)

From Eqs. 5.1-24_ 5.1-25_ an4 5oi_26 we see that the first

term in this series i.s of zero order in _ j and that the

second_ third_ and fourth terms are of first order. When these

quantitiesj together with the expansion

_
7 -/-e (5.2-8)

are inserted into Eq. 4.3-1 and the summation over 1 is

carried out by again changing to an integral over _ _ we

find that
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/
- i Cf) "÷" , (5.2-9)

where _ , _! , and _9_ are functions of Z only. The

term _-_ fo results from the insertion of the first term

in Eq. 5.2-7 into the equation for -_O___ (_cu_2_ I OJ_j -2

from the second term, and _-I_o from the third and fourth

terms. When the terms containing fo and _I are inserted

into the expression for _ , Eq. 5.2-1, and the summations

over and are carried out by means of Eqs. 5.2-5 and

5.2-6 we obtain terms of zero order in _ But when the

term containing _. is inserted we obtain a term of order _.

Hence this term, though of the same order in _ as the

second term, may be neglected. It is for this reason that we

never need to know _J) explicitly. In the following work

such terms, which do not contribute to the transport coefficients

in the classical limit, will be omitted from the power series

expansions.

We now present the results of carrying out these processes

on Zo_g_B_O_ _ ]_)_ For _- equal to zero and one,

we have
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S_ __I oA -
/ /6T_ _

and

t

(5.2-10)

_1_ (_-:o-e_.e_l*A-
6

_5_ +'"
(5.2-II)

Only the term of order __o is required in the expansion

It is found to be zero_

= _--g 0 -/-,' (5.2-12)

We must now obtain similar expansions for _ -__9_)(/)/_ and

Section 5,3 The Expansion of Q O){_gg )- and

d_){_O_'_ _'_) _ in Powers of _ .

The expansions of

have been obtained in Eqs. 5.1-30 and 5.1-31, Expressions for

_A (._I_$)_ and (_{_) (_-_-_0_)_ are given
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in Eqso 4o2-13 and 4.2-14 respectively. Whenthese are expanded

in powers of _ we find that

= -

and

(5.3-i)

9

Finally, we wish to carry out a similar expansion for

(_) . _ _PI)

an_ d_ _°__J;_ " _e_ea_ _v_n_ _s. _.;-_,
4.2-12_ 4.3-4_ and 4.3-5 respectively. An expansion of the

[0 C_ F13

sum of 7_2_C_ __)9_ and "-f_6_ (_-_'_)_ will

contain terms in Z_ due to the difference between

and also terms arising from the different values of

occur. The terms in a _ are obtained by making expansions

such as that in Eq. 5.2-7 and carrying terms through second

order in A_

the sum over

and ,_ ,

which

If we evaluate these terms again by changing

to an integral over _ we find that
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__ o° _e _1

_/_i_ °_ _z
X (\,o_ooo)

The notation E

÷%,°° )

]_=_ means that the quantity in the

brackets is to be evaluated at _ = _ While the lowest

order terms in both L O_p_C__$_=_ and

E_fl)0_ (__;_J_=_ are of order <_-& _ the terms

of order _-_ and _ -I cancel in the sum; hence the sum is of

zero order in _ It is for this reason that we evaluate

these terms together.

If we combine Eqs. 4.2-11 and 4.3-4 we find_ after

considerable manipulation_ that
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2r __,-_,_

9._+I

+

/

g_A-F ! _4-I

_, _

I'
O.

____.,_-_ _ _+,-_

9.

I'

t I

(5.3-4)



III

Two problems are encountered when we attempt to evaluate

the expression in Eq. 5.3-4 using the Euler-Maclaurin formula.

When we expand the first term in the summation in Eq. 5.3-4_

we have_ to lowest order in _ •

However_ the expression for

#

(5.3-5)

H

obtained by differentiating

Eq. 5.1-19 is

//

(5.3-6)

This is infinite for /_ equal to _ , whereas we would

expect from continuity considerations that equals zero

at _ equal to _-" The difficulty can be attributed to

the fact that at _ equals 6- _ the order and argument of

the Bessel functions become equal. The asymptotic series

which we use are not valid in this region. We may circumvent

this difficulty by the following procedure.

expansion of _)0)__)o in powers of

Consider an

. Thus

If we multiply by _ and differentiate twice with respect
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to _ _#e find that_ to lowest order in

(5.3-8)

But by differentiating Eqo 4=1-19 we obtain

Combining the last two equations we find that (5.3-9)

/ /

,t
(5.3-10)

0 #10J7

We may use this relation to eliminate the derivative

Considerir;,g r;ow the first two terms in the summation over

in Eq. 5.3-4_ we have



i13

//

/

(5.3-11)

The term

_t+ / ' _-s •

is of at least first order in _ and hence does not contribute

to the classical limit. The four squared terms in brackets

which follow are_ to lowest order in _ _ equal to

(5.3-13)
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where

= _ _ . (5.3-14)

The sumover _ of the following two terms is

(5.3-15)
Here occurs the second of the problems which were

mentioned at the beginning of this section. If we were simply

to change the sum over /_ to an integral over _ we would

not be correct. , The reason is that whenever there is a higher

power of _ in the denomirmtor than in the numerator all of

the Euler-Maclaurin correction terms must be included. For

example, consider the sum

(b

4/ -
(5.3-16)

If we were to change this sum to an integral, and neglect the

I and the 2 in comparison with the _ we would obtain zero,

whereas the value of the sum is actually equal to one. Hence,

sums with higher powers of _ in the denominator than in

the numerator must be carried out explicitly.
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The final term in Eq. 5.3-4 is

(5.3-17)

To lowest order in /_ this can be written as

(5.3-18)

Since all terms are now of zero order in _ , we may

replace 7 and its derivatives by _-_(o)and the
i

corresponding derivatives. When all these terms are inserted

into Eq. 5.3-4j and the sum over _ is changed to an

integral over /8" in those terms in which it is permissible

to do so_ we obtain

6"

o- ('-/9 ..
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-h
/

9,=0

_/;'7" 9_ "._,-;..-/_

T l< >oo;
£

(5.3-19)

We must now carry out the same process on the sum

f_) --@.)

quantities are given by Eqs. 4.2-12 and 4.3-5. As we did

in the case of _(/)(/'_0._'_ e__) we write

2

_<

9.. _/f_ £ '7
(5.3-20)

where the term in (A_) has been obtained in a straight-

forward fashion. The first term is given by
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,//

(" ,_) _ ,/_

2
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¢
/ /

4

(5.3-21)

In order to remove the terms in ? in this expression we

use the following equationj which is derived in a manner

analogous to that used in the derivation of Eq. 5.3-10.

_ (,_÷n(2,,oJ , _ ,) z
R

(5.3-22)
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Thenj after carrying out manipulations similar to those performed

[- rt) 2___)_ _fl)L_ (_-_¢J]_f= we findin obtaining LT_,Ce

-- S 6-

6-

The integral over _ appearing in this expression is equal

to I/3_ and the sum over _ is equal to zero. This can be

seen from the fact that

(3O

_Q+ c2,,K+ I

R=o

4--

-- '0 . (5.3-24)
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The sumis carried out by noting that all terms in each series

cancel with terms in other series except the first few. These

must be added explicitly. Thuswe find that

9_
(5.3-25)

Q}
We have now completed the expansion of ? /_-_Q_

U

and _J(_-__ . From Eqs. 5.1-30, 5.3-1, 5.3-3, and

5.3-19 we have

2

9 2

÷" +'- (5.3-26)
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From Eqs. 5.1-31_ 5°3-2_ 5.3-20j and 5.3-25j we have

= _-ZTc _

./_/-#-

1
_...J _ . - - . (5.3-27)

The expansions of -L_/Q_9_&I_)_ for _ equal to

o_ I_ and 2 are also needed in the evaluation of the classical

limit of the transport coefficients° They are given by Eqs.

5.2-i0_ 5.2-iI_ and 5.2-12 respectively.

This completes the expansion of the moments of the cross

section of Chapter IV in powers of _ Again it should

be emphasized that only those terms have been evaluated which

contribute to the classical limit of the transport coefficients.

We shall now proceed to the evaluation of these coefficients.
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CHAPTERVI

THETRANSPORTCOEFFICIENTS

Wehave now arrived at the last step in our development_

the evaluation of the classical limit of the transport

coefficients. The formulas which we use for these coefficients

were first derived by WangChang_Uhlenbeck_ and de Boer20J21
25

As mentioned in Chapter I_ McCourt and Snider have recently

shownthat these formulas are correct if the degeneracy averaged

cross section is used; alsoj in sumsover internal states the

degeneracy of the state must be included. Weuse the formulas

in the form developed by Masonand Monchick37.

Section 6.1 The Relaxation Time

Since a loaded sphere has two internal degrees of freedom

(only two need be considered since the angular velocity about

the symmetry axis cannot be changed in a collision)_ the quantity

% - 6L

approaches zero as time progresses. Here i/_ and _£

mean translational and rotational energies per molecule

(excluding any energy associated with rotation about the

symmetry axis). If the system is only slightly displaced

from equilibrium_ this quantity decreases to a value I/e of

(6.1-1)

are the
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its original value in a time _ called the relaxation time.

The expression given by Masonand Monchick for this quantity

is

t - cC_ _ _ _ (_°_S

(6.i-2)

C_Jwhere l_ is Boltzmannls constant; is the internal

specific heat per molecule and is equal to ;< for the loaded

sphere; _ is the number density; and C_ _ is equal to

_._/I_]-j where _" is the internal energy in the state

specified by the quantum number _o. The quantity __a__J

is the degeneracy averaged cross section defined in Eq. 3.1-2.

From Eq. 3.1-3 it follows that

]2-(;_,t,_-J.,_._?s<_,_d</,-- 7.-Z6-_% _x IoJ. _._-_)

Due to the presence of the quantity (A_ _" in the integrand

of Eq. 6.1-2_ we need insert only the inelastic part of

__°__ i O J into the integralj since the elastic

terms make no contribution. Thus
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-9_

__o_e) _(_-%_)(_f_÷Q -E_. -_

--2

Thisequationj together with the expression for the energy

levels of the loaded sphere, Eq. 1.2-3, and the expression for

Z_(_-_°Q 2- IO)_ , Eq. 4.3-1, gives an exact quantum

mechanical expression for the reciprocal of the relaxation time

to second order in the parameter $/0-.

We now proceed to find the classical limit of the

relaxation time° Using the expression for the expansion of

_/2__I0)_ in powers of _ , Eq. 5.2-I0_ we

find that

(6. i-5 )
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In obtaining this resultj we have carried out the integration

over _ by means of the formula

co

?'7c _- = _ (61-6)

To lowest order in we have

9.Pl_7 (6.1-7)

Finally_ we use Eq. 5°2-6 to carry out the sums over the

final statesj and carry out the sums over the initial states

by again changing the sums to integrals. The result is

• .- (6.1-8)

The subscript C.L. denotes classical limit. This result will

be compared with other values which have been obtained for the

relaxation time for a gas of loaded spheres in Section 6.4.

Section 6.2 The Coefficient of Shear Viscosity

The formula which Mason and Monchick give for the

coefficient of shear viscosity _ is

!
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We carry out the angle integrations_ and obtain

, _ _ XT(o_o+,)e-e_

,(&_*v)e J'-LF.__'F,,,,,,_S:,._;

(6.2-2)

Here we have substituted _g) for

in accordance with the discussion given in Section 4.2. The

quantity _(_)#_%-_) is equal to the following sum:

b
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(_) f_ o _ _ (6.2-3)

The spherical term _ (_ J_ J_JJO is given by

Eq. 4.1-20; the elastic terms which are of second order in _/O_

given by Eqs. 4.2-14 and 4.2-12; and the inelastic term which

is of second order in _/G _ _f_')o_L___J __ J is given

by Eq. 4.3-5. The quantity Z__-_g/_Jg, is given

by Eq. 4.3-3. Thus_ by means of these formulas_ one may obtain

numerical values for the quantum mechanical coefficient of

shear viscosity for a gas of loaded spheres through second

In order to calculate the classical limit of the coefficient

of shear viscosity_ we make use of the expansions of

7_)2__O_ _) , Eq. 5.3-7, _and Z___I _)O.

Eq. 5.2-12_ in power series in _ When these expressions

are inserted into Eqo 6.2-2_ and the sums over the internal

states and the integration over _ are carried out_ we obtain
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the result

/4

We note that setting

(6.2-4)

equal to zero yields the

expression for the coefficient of shear viscosity for a gas

of rigid spheres of diameter _ ° This isj of course_ to

be expected from the definition of _ as a parameter which

measures the degree to which the loaded sphere under consideration

differs from an ordinary rigid sphere.

Section 6.3 The Coefficient of Thermal Conductivity

The coefficient of thermal conductivity _ is written

as the sum of two terms_

(6.3-I)

where _ arises from the flux of translational kinetic

energy_ and _ from the flux of internal energy. The

expressions for these quantities are
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o_!/ Z _

P.

where

CA4)
/s icT_c_T._/ Y

+ 9 m (xZ

(6.3-3)

_Ei_.I

_P.

___ __ _ ,

Y= P--V 7Z-)_

× _ (z_cj2(9_QTly(e_7/je -C_'-_

(6.3-4)

--2

(6.3-5)
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Z

9_

--2

and

(6.3-6)

(6.3-7)

It is shown by Mason and Monchick that the quantities

and y can be written exactly in terms of the relaxation

time and the coefficient of shear viscosity j

_r) _- c_

X

(6.3-8)

and

• C(d_)

(6.3-9)
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The quantity Z may be written as the sum of three

termsj

Z=Z, fZ_# Z3 ,
(6.3-10)

where

S _ C(_:'_)
(6.3-11)

_9_

(6.3-12)

and
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_2
--9 --(

_- (6.3-13)

The expression for _C')/_O_0_ _) may

analogous to that for _(_)(__0_)

be written in a manner

Eq. 6.2-3. Thus

c4_ _'_o_'L l +'"

elastic terms "_f_A_÷¢_

(6.3-14)

is given by Eq. 4.1-19_ the

(_ _ _)_ and

are given by Eqs. 4.2-13 and 4.2-iI_
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f/7
and the inelastic term _ /_-_2_J Q. is given by

_ . _e_ is given byEq. 4.3-4o The quantity _/_ _ _9_ "_ I 2JQ_

Eq. 4.3-2. Thus we have all of the quantities needed for an

exact calculation of the translational and internal contributions

to the thermal ccnductivity of a gas of loaded spheresj through

second order in _/0" .

In order to obtain the classical limits of these quantitiesj

we make use of our results for the classical relaxation time and

coefficient of shear viscosity to write

(6.3-15)

(6.3-16)

and

(6.3-17)

When we insert the expansion of _C/)_3p-2_ J ,

Eq. 5.3-26_ into the expression for ZO, given by Eq. 6.3-12,

and carry out the sums over the internal states and the integration
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over _ _ we obtain

(6.3-18)

In order to find the classical limit of the quantity _$

Eq. 6.3-13_ we write

l A C , (_CJ-f=-7 -- --- (6.3-19)

and

-C_ :G_ +_o (6.3-20)

where __ is the change in internal energy of molecule

Then 2_ may be written as the sum of two terms:

(c_o-<{_)(_°_9(__,)c-r_°-C_-_

(6.3-21)
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and

(6.3-22)

The classical limits of these expressions are found by

inserting the expansion of Z_-O lOOP]/)_ in powers of _ ,

Eqo 5.2-Ii_ into the above expressions_ and again carrying

out the indicated sums and integration° The results obtained are

(6.3-23)

and

(6.3-24)
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Whenthe separate contributions to Z are added, we find that

p (6.3-25)

Finally, we insert the values of (_)C., ,. (Y)C. 6., and

(_)C._. , given by Eqs. 6.3-15, 6.3-16, and 6.3-25, respectively

into Eqs. 6.3-2 and 6.3-3 for the coefficients of thermal

conductivity, and obtain

c._. d_/

and

7r_2 h, I,. 6 P ./,
(6.3-26)

0._)_,_:= Y _r6-" _ 17<¢ _ • (6.3-27)

This completes the evaluation of the classical limits of

the transport coefficients.

Section 6.4 Discussion

The first calculation of a transport property for the

loaded sphere model was made by J. Jeans II'12° Using the mean

free path approach to kinetic theory, he obtained the following

result for the relaxation time:
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,.s 9 n 7]-6- %__! , (6.4-1)

Comparing this with the result given in Eq. 6°I-8j we find that

I 6- I: (6.4-2)

Thus his result differs from ours only by a factor of 5/3.

In order to compare our results with those which would be

obtained using the Mason-Monchick 35 approximate formula for

the coefficient of thermal conductivityj we compute the classical

limit of a quantity _) introduced by Mason and Monchick and

called the self-diffusion coefficient_ the formula for which is
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(6.4-3)

where _ is the massdensity. Whenwe compute the classical

limit of this quantity we obtain

The Mason-Monchickapproximation then consists of writing

where Z is the quantity given by Eq. 6.3-6. If we use our

results for (//_)c._. , Eq. 6.1-8, and iI/D)C._. , Eq. 6.4-4,

we obtain
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(6.4-6)

The classical limit of this quantity is given by Eq. 6.3-25.

In arriving at the expression in Eq. 6.4-5_ Masonand

Monchick makethree approximations. In making the expansion

of _ in powers of _ • Eq. 6.3-19• they keep two terms.

In the present development_ the third term also contributes.

The contribution to Z thereby neglected is

F

_¢_-_ 2

(6.4-7)

The classical limit of the above expression is

_ __/_T _(__ (6.4-8)
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The second approximation was to neglect the quantity

-7V e
E_

The classical limit of the above expression is

(6.4-9)

- M-_ _-_
9

(6.4-i0)

Finally_ they make the approximation that

Zo= __ 7-
9_ rod

(6.4-11)

where Z_ is the quantity defined by Eq. 6.3-12. The classical

limit of the quantity on the right hand side of the above

equation is
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- __

The classical limit of Z_ is given by Eq. 6.3-18.

In this thesis we have obtained exact quantum mechanical

expressions for the transport coefficients of a gas of loaded

spheres, through second order in _ , the displacement of

the center of mass from the geometrical center. We have, in

this chapter, obtained the classical limit of theae quantities.

A purely classical treatment of the transport coefficients for

this model_ using the Chapman-Enskog method, has been given in

14 15
two papers by Dahler and Sather , and Sandier and Dahler °

Their results are valid for all values of 2 When their

results are expanded in power series in _ , and the terms

arising from the coupling of the linear and angular velocities

in the expansion of the perturbation function are ignored, it

is found that their results and those of the present treatment

gaagree to terms in

(6.4-12)
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APPENDIXi

In this appendix we present a number of useful relations

amongrepresentation coefficients_ Wigner coefficients_ and

Racah coefficients. They are taken from Appendix A of the
38

Thesis of George Gioumousis ; Tables of Racah Coefficients_

by Simon_ Vander Sluis_ and Biedenharn39; and The Theory of

32
Atomic Spectra, by Condon and Shortley .

Representation Coefficients and Integrals

(A. I-I)

Q

(A. i-2)

(A. i-3)

/l) ql=;l" ''n'_3 _3 /'_j nl

<2.ee÷ I '-'._ m,r_

(A. i-4)
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Wigner Coefficients

(A. 1-5)

where

z,(o¢_) = /
-- 0

for I I_-CI

otherwise

/

',_Ca_-,z _'ca'a-a" = g4o-'
C

(A. I-6)

-e/._o'-'-_,_t,°x
-.z -_'

o.._ -_-C

(A. I-7)

(A.1-8)

(A. I-9)
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(A. I-I0)

(A. 1-11)

(A.1-12)

_+,,/_,<+-r<Fo__<r'<.<_.,,,&<fJ,,(_¢).

(A, 1-13)

9

(A. 1-14)
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(A.1-15)

-- D/(_odd S'._.J (A. 1-16)

(A. 1-17)

= 6_//+#'-_-°c
(A.1-18)

bi Co_ f _ .z c) . (A.1-19)

Explicit Expressions for Certain Winner Coefficients

_/ _ _/_-_I
(A.1-20)
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u (A.1-21)

(A. 1-22)

(A. 1-23)

(A. 1-24)
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APPENDIXII

The following two identities are used frequently in this

thesis_

,,,a.'k'

and

(A.2-1)

CA. 2-2)
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Wegive a derivation of the secondof these identities.

let P equal the quantity on the left hand side of

Eqo A.2-2. From Eqs. Aol-9 and A.I-II we have

(A.2-3)

Upon carrying out the sumover _ by meansof Eq. A.1-5 we find

_ _,_ e_ & ;2% _-

(A. 2-4)

Also_ by using _qso A.1-7 and A.I-II we get
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¢

But; by Eq. A.I-8j

(A. 2-5)

(A, 2-6)

Hence

P = (-/) n/ _ +¢ (ez÷n

.eL

We carry out the sums over and

(A. 2-7)

by using Eq. A.1-5.

The result given in Eq. A.2-2 then follows.

The derivation of Eq. A.2-1 is virtually identical.
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APPENDIX III

The expression for .-L_ (-l_1_-_ _/,J-)_').

Eq. 3.4-4_ may be written in the form

><"

where

/

(A.3-1)

_j

L

As we mentioned in Section 3.4_ for any value of _ _ the

possible values of _ _ _ and _ # are restricted by

the Wigner coefficients. For 0- equal to onej there are six

combinations of these indices which lead to nonzero values of

_(_"_" /_/) ; for _- equal to twoj there are ten

combinations. We list these in the following two tables.
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